Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38573520

RESUMO

Visual systems adapt to different light environments through several avenues including optical changes to the eye and neurological changes in how light signals are processed and interpreted. Spectral sensitivity can evolve via changes to visual pigments housed in the retinal photoreceptors through gene duplication and loss, differential and coexpression, and sequence evolution. Frogs provide an excellent, yet understudied, system for visual evolution research due to their diversity of ecologies (including biphasic aquatic-terrestrial life cycles) that we hypothesize imposed different selective pressures leading to adaptive evolution of the visual system, notably the opsins that encode the protein component of the visual pigments responsible for the first step in visual perception. Here, we analyze the diversity and evolution of visual opsin genes from 93 new eye transcriptomes plus published data for a combined dataset spanning 122 frog species and 34 families. We find that most species express the four visual opsins previously identified in frogs but show evidence for gene loss in two lineages. Further, we present evidence of positive selection in three opsins and shifts in selective pressures associated with differences in habitat and life history, but not activity pattern. We identify substantial novel variation in the visual opsins and, using microspectrophotometry, find highly variable spectral sensitivities, expanding known ranges for all frog visual pigments. Mutations at spectral-tuning sites only partially account for this variation, suggesting that frogs have used tuning pathways that are unique among vertebrates. These results support the hypothesis of adaptive evolution in photoreceptor physiology across the frog tree of life in response to varying environmental and ecological factors and further our growing understanding of vertebrate visual evolution.


Assuntos
Opsinas , Pigmentos da Retina , Humanos , Animais , Opsinas/genética , Anuros/genética , Duplicação Gênica , Microespectrofotometria
2.
Virol J ; 21(1): 40, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341597

RESUMO

Since the onset of the coronavirus disease (COVID-19) pandemic in Belgium, UZ/KU Leuven has played a crucial role as the National Reference Centre (NRC) for respiratory pathogens, to be the first Belgian laboratory to develop and implement laboratory developed diagnostic assays for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) and later to assess the quality of commercial kits. To meet the growing demand for decentralised testing, both clinical laboratories and government-supported high-throughput platforms were gradually deployed across Belgium. Consequently, the role of the NRC transitioned from a specialised testing laboratory to strengthening capacity and coordinating quality assurance. Here, we outline the measures taken by the NRC, the national public health institute Sciensano and the executing clinical laboratories to ensure effective quality management of molecular testing throughout the initial two years of the pandemic (March 2020 to March 2022).


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiologia , Bélgica/epidemiologia , Teste para COVID-19 , Pandemias , Técnicas de Laboratório Clínico , Técnicas de Diagnóstico Molecular
3.
BMC Ecol Evol ; 21(1): 182, 2021 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-34565329

RESUMO

BACKGROUND: Chemical communication is an important aspect of the behavioural ecology of a wide range of mammals. In dogs and other carnivores, anal sac glands are thought to convey information to conspecifics by secreting a pallet of small volatile molecules produced by symbiotic bacteria. Because these glands are unique to carnivores, it is unclear how their secretions relate to those of other placental mammals that make use of different tissues and secretions for chemical communication. Here we analyse the anal sac glands of domestic dogs to verify the secretion of proteins and infer their evolutionary relationship to those involved in the chemical communication of non-carnivoran mammals. RESULTS: Proteomic analysis of anal sac gland secretions of 17 dogs revealed the consistently abundant presence of three related proteins. Homology searches against online databases indicate that these proteins are evolutionary related to 'odorant binding proteins' (OBPs) found in a wide range of mammalian secretions and known to contribute to chemical communication. Screening of the dog's genome sequence show that the newly discovered OBPs are encoded by a single cluster of three genes in the pseudoautosomal region of the X-chromosome. Comparative genomic screening indicates that the same locus is shared by a wide range of placental mammals and that it originated at least before the radiation of extant placental orders. Phylogenetic analyses suggest a dynamic evolution of gene duplication and loss, resulting in large gene clusters in some placental taxa and recurrent loss of this locus in others. The homology of OBPs in canid anal sac glands and those found in other mammalian secretions implies that these proteins maintained a function in chemical communication throughout mammalian evolutionary history by multiple shifts in expression between secretory tissues involved in signal release and nasal mucosa involved in signal reception. CONCLUSIONS: Our study elucidates a poorly understood part of the biology of a species that lives in close association with humans. In addition, it shows that the protein repertoire underlying chemical communication in mammals is more evolutionarily stable than the variation of involved glands and tissues would suggest.


Assuntos
Sacos Anais , Cães , Odorantes , Animais , Proteínas de Transporte , Feminino , Mamíferos/genética , Proteômica
4.
Mol Biol Evol ; 36(9): 1921-1930, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31238339

RESUMO

Chemical signaling in animals often plays a central role in eliciting a variety of responses during reproductive interactions between males and females. One of the best-known vertebrate courtship pheromone systems is sodefrin precursor-like factors (SPFs), a family of two-domain three-finger proteins with a female-receptivity enhancing function, currently only known from salamanders. The oldest divergence between active components in a single salamander species dates back to the Late Paleozoic, indicating that these proteins potentially gained a pheromone function earlier in amphibian evolution. Here, we combined whole transcriptome sequencing, proteomics, histology, and molecular phylogenetics in a comparative approach to investigate SPF occurrence in male breeding glands across the evolutionary tree of anurans (frogs and toads). Our study shows that multiple families of both terrestrially and aquatically reproducing frogs have substantially increased expression levels of SPFs in male breeding glands. This suggests that multiple anuran lineages make use of SPFs to complement acoustic and visual sexual signaling during courtship. Comparative analyses show that anurans independently recruited these proteins each time the gland location on the male's body allowed efficient transmission of the secretion to the female's nares.


Assuntos
Anuros/metabolismo , Atrativos Sexuais/metabolismo , Animais , Anuros/genética , Glândulas Exócrinas/metabolismo , Feminino , Masculino , Oligopeptídeos/metabolismo , Filogenia , Caracteres Sexuais , Sequenciamento do Exoma
5.
Sci Rep ; 6: 21880, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26935790

RESUMO

Sodefrin, a decapeptide isolated from the male dorsal gland of the Japanese fire belly newt Cynops pyrrhogaster, was the first peptide pheromone identified from a vertebrate. The fire belly salamander and sodefrin have become a model for sex pheromone investigation in aquatically courting salamanders ever since. Subsequent studies in other salamanders identified SPF protein courtship pheromones of around 20 kDa belonging to the same gene-family. Although transcripts of these proteins could be PCR-amplified in Cynops, it is currently unknown whether they effectively use full-length SPF pheromones next to sodefrin. Here we combined transcriptomics, proteomics and phylogenetics to investigate SPF pheromone use in Cynops pyrrhogaster. Our data show that not sodefrin transcripts, but multiple SPF transcripts make up the majority of the expression profile in the dorsal gland of this newt. Proteome analyses of water in which a male has been courting confirm that this protein blend is effectively secreted and tail-fanned to the female. By combining phylogenetics and expression data, we show that independent evolutionary lineages of these SPF's were already expressed in ancestral Cynops species before the origin of sodefrin. Extant Cynops species continue to use this multi-component pheromone system, consisting of various proteins in addition to a lineage-specific peptide.


Assuntos
Oligopeptídeos/metabolismo , Feromônios/metabolismo , Salamandridae/metabolismo , Animais , Feminino , Masculino , Especificidade da Espécie
6.
PLoS One ; 11(1): e0144985, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26771882

RESUMO

Pheromones are an important component of sexual communication in courting salamanders, but the number of species in which their use has been demonstrated with behavioral evidence remains limited. Here we developed a behavioral assay for demonstrating courtship pheromone use in the aquatically courting Iberian ribbed newt Pleurodeles waltl. By performing an in-depth study of the courtship behavior, we show that females invariably open their cloaca (cloacal gaping) before engaging in pinwheel behavior, the circling movement that is the prelude to spermatophore uptake. In contrast, cloacal gaping was not observed in failed courtships, where females escaped or displayed thanatosis. Since gaping mainly occurred during male amplexus and cloacal imposition, which is the obvious period of pheromone transfer, we next investigated whether male courtship water (i.e., water holding courtship pheromones) alone was able to induce this reaction in females. These tests showed that courtship water induced cloacal gaping significantly more than water, even in the absence of a male. Cloacal gaping thus provides a simple and robust test for demonstrating courtship pheromone use in the Iberian ribbed newt. Since opening the cloaca is an essential prerequisite for spermatophore pick-up in all internally fertilizing salamanders, we hypothesize that variations on this assay will also be useful in several other species.


Assuntos
Corte , Feromônios , Salamandridae/fisiologia , Comportamento Sexual Animal , Animais , Feminino , Masculino
7.
BMC Evol Biol ; 15: 54, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25888438

RESUMO

BACKGROUND: Male salamanders (Urodela) often make use of pheromones that are produced in sexually dimorphic glands to persuade the female into courtship and mating. The mental gland of lungless salamanders (Plethodontidae) and dorsal cloacal glands (or abdominal glands) of newts (Salamandridae) have been particularly well studied in that respect. In both families, sodefrin precursor-like factor (SPF) proteins have been identified as major components of the courtship pheromone system. However, similar to plethodontids, some newts also make use of subtle head glands during courtship, but few pheromones have been characterized from such structures. Males of red-spotted newts (Notophthalmus viridescens, Salamandridae) have both cloacal and cheek (genial) glands, and are known to apply secretions to the female's nose by both tail-fanning and cheek-rubbing. Here we combined transcriptomic and phylogenetic analyses to investigate the presence, diversity and evolution of SPF proteins in the cloacal and cheek glands of this species. RESULTS: Our analyses indicate that the cheek glands of male N. viridescens produce a similar amount and diversity of SPF isoforms as the cloacal glands in this species. Expression in other tissues was much lower, suggesting that both male-specific courtship glands secrete SPF pheromones during courtship. Our phylogenetic analyses show that N. viridescens expresses a combination of isoforms that stem from four highly diverged evolutionary lineages of SPF variants, that together form a basis for the broad diversity of SPF precursors in the breeding glands. CONCLUSIONS: The similar SPF expression of cheek and cloacal glands suggests that this protein family is used for pheromone signalling through cheek rubbing in the red-spotted newt. Since several male salamandrids in other genera have comparable head glands, SPF application via other glands than the cloacal glands may be more widespread than currently appreciated in salamandrids.


Assuntos
Notophthalmus viridescens/fisiologia , Animais , Corte , Glândulas Exócrinas/química , Feminino , Masculino , Oligopeptídeos/química , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Feromônios/química , Feromônios/genética , Feromônios/metabolismo , Filogenia , Proteínas/genética
8.
Proc Biol Sci ; 282(1803): 20142960, 2015 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-25694622

RESUMO

Males of the advanced salamanders (Salamandroidea) attain internal fertilization without a copulatory organ by depositing a spermatophore on the substrate in the environment, which females subsequently take up with their cloaca. The aquatically reproducing modern Eurasian newts (Salamandridae) have taken this to extremes, because most species do not display close physical contact during courtship, but instead largely rely on females following the male track at spermatophore deposition. Although pheromones have been widely assumed to represent an important aspect of male courtship, molecules able to induce the female following behaviour that is the prelude for successful insemination have not yet been identified. Here, we show that uncleaved sodefrin precursor-like factor (SPF) protein pheromones are sufficient to elicit such behaviour in female palmate newts (Lissotriton helveticus). Combined transcriptomic and proteomic evidence shows that males simultaneously tail-fan multiple ca 20 kDa glycosylated SPF proteins during courtship. Notably, molecular dating estimates show that the diversification of these proteins already started in the late Palaeozoic, about 300 million years ago. Our study thus not only extends the use of uncleaved SPF proteins outside terrestrially reproducing plethodontid salamanders, but also reveals one of the oldest vertebrate pheromone systems.


Assuntos
Proteínas de Anfíbios/metabolismo , Atrativos Sexuais/metabolismo , Urodelos/fisiologia , Sequência de Aminoácidos , Proteínas de Anfíbios/genética , Animais , Sequência de Bases , Corte , Feminino , Masculino , Dados de Sequência Molecular , Filogenia , Proteoma , Atrativos Sexuais/genética , Comportamento Sexual Animal , Especificidade da Espécie , Transcriptoma , Urodelos/genética
9.
Mol Biol Evol ; 32(2): 472-80, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25415963

RESUMO

Sex pheromones form an important facet of reproductive strategies in many organisms throughout the Animal Kingdom. One of the oldest known sex pheromones in vertebrates are proteins of the Sodefrin Precursor-like Factor (SPF) system, which already had a courtship function in early salamanders. The subsequent evolution of salamanders is characterized by a diversification in courtship and reproduction, but little is known on how the SPF pheromone system diversified in relation to changing courtship strategies. Here, we combined transcriptomic, genomic, and phylogenetic analyses to investigate the evolution of the SPF pheromone system in nine salamandrid species with distinct courtship displays. First, we show that SPF originated from vertebrate three-finger proteins and diversified through multiple gene duplications in salamanders, while remaining a single copy in frogs. Next, we demonstrate that tail-fanning newts have retained a high phylogenetic diversity of SPFs, whereas loss of tail-fanning has been associated with a reduced importance or loss of SPF expression in the cloacal region. Finally, we show that the attractant decapeptide sodefrin is cleaved from larger SPF precursors that originated by a 62 bp insertion and consequent frameshift in an ancestral Cynops lineage. This led to the birth of a new decapeptide that rapidly evolved a pheromone function independently from uncleaved proteins.


Assuntos
Atrativos Sexuais/genética , Urodelos/genética , Urodelos/metabolismo , Animais , Evolução Molecular , Atrativos Sexuais/classificação
10.
J Exp Biol ; 216(Pt 22): 4139-43, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23948475

RESUMO

Males of many frog species develop spiny nuptial pads with underlying glands on their thumbs during the mating period. We used 3D visualization on the European common frog Rana temporaria to show that the morphology of these glands allows the channelling of secreted molecules to the pad's surface during amplexus. Combined transcriptome and proteome analyses show that proteins of the Ly-6/uPAR family, here termed amplexins, are highly expressed in the nuptial glands during the mating season, but are totally absent outside that period. The function of amplexins remains unknown, but it is interesting to note that they share structural similarities with plethodontid modulating factors, proteins that influence courtship duration in salamanders.


Assuntos
Comunicação Animal , Anuros/fisiologia , Membro Anterior/metabolismo , Atrativos Sexuais/metabolismo , Caracteres Sexuais , Animais , Anuros/metabolismo , Cromatografia Líquida de Alta Pressão , Biblioteca Gênica , Técnicas Histológicas , Espectrometria de Massas , Reação em Cadeia da Polimerase , Atrativos Sexuais/genética , Especificidade da Espécie , Urodelos/metabolismo , Microtomografia por Raio-X
11.
PLoS One ; 8(2): e56538, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23457580

RESUMO

Internal fertilization without copulation or prolonged physical contact is a rare reproductive mode among vertebrates. In many newts (Salamandridae), the male deposits a spermatophore on the substrate in the water, which the female subsequently takes up with her cloaca. Because such an insemination requires intense coordination of both sexes, male newts have evolved a courtship display, essentially consisting of sending pheromones under water by tail-fanning towards their potential partner. Behavioral experiments until now mostly focused on an attractant function, i.e. showing that olfactory cues are able to bring both sexes together. However, since males start their display only after an initial contact phase, courtship pheromones are expected to have an alternative function. Here we developed a series of intraspecific and interspecific two-female experiments with alpine newt (Ichthyosaura alpestris) and palmate newt (Lissotriton helveticus) females, comparing behavior in male courtship water and control water. We show that male olfactory cues emitted during tail-fanning are pheromones that can induce all typical features of natural female mating behavior. Interestingly, females exposed to male pheromones of their own species show indiscriminate mating responses to conspecific and heterospecific females, indicating that visual cues are subordinate to olfactory cues during courtship.


Assuntos
Corte , Amor , Atrativos Sexuais/farmacologia , Comportamento Sexual Animal/efeitos dos fármacos , Animais , Cloaca/efeitos dos fármacos , Sinais (Psicologia) , Feminino , Inseminação/efeitos dos fármacos , Masculino , Percepção Olfatória/efeitos dos fármacos , Salamandridae , Comportamento Sexual Animal/fisiologia , Especificidade da Espécie , Espermatogônias/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA